
35th International Electric Vehicle Symposium and Exhibition (EVS35)
Oslo, Norway, June 11-15, 2022

Self-Reconfigurable Battery Lifetime Management in EV
Application

Jerome Blatter1, Remy Thomas1, Vincent Heiries2, Ghislain Depesse2

1Univ. Grenoble Alpes, CEA Liten, France
2Univ. Grenoble Alpes, CEA Leti, France

name.lastname@cea.fr

Executive Summary

Due to factory production discrepancies and various operating conditions, cells integrated in conven-
tional battery systems are not similar. In a static serial connection, the weakest cell always limits the
battery pack capacity. Self-reconfigurable batteries (SRB), where semiconductor switches allow cells to
be connected or bypassed dynamically, are used to by-pass the weakest cell and so use the full battery
capacity at any time. The in-line configuration even allows direct generation of AC current without any
power converter. This paper proposes a lifetime management strategy for SRB generating AC current.
A full battery cell model including ageing mechanisms is used to perform the minimization of the SRB
capacity losses with the aim of demonstrating the SRB capabilities in terms of lifetime extension in the
EV application. The performance analysis of the strategy is achieved through simulation of the SRB
using a standardized vehicle driving cycle at various Depth of Discharge and State of Heath. A whole
battery life simulation allows estimating a battery lifetime extension of 40.6%.
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1 Introduction
Electric battery vehicle (EV) seems to be the most promising solution to address the critical issues of
replacing the actual fleet of combusting engine vehicle to contain the climate change. Lithium-ion bat-
tery are the most advanced battery technological solution for this due to its features: high energy and
power density, long service life, low self-discharge and a market established technology. Unfortunately,
Lithium-ion battery must operate under strict conditions. Especially each battery cell must be within
the safe voltage range. Battery Management System (BMS) are used to supervise these conditions and
correct some cell dispersions dues to factory production discrepancies and various operating conditions.
These dispersions even appear between identical, brand-new cells from the same batch [1] and increase
with the battery pack ageing [2]. In a traditional battery pack, cells are statically connected in series and
in parallel to comply with voltage, current and capacity requirement. Additionally, the BMS frequently
only correct the coulometric efficiency dispersion during battery charge. As a consequence, the weakest
cell increasingly limits the entire battery pack capacity during discharge [3].
Self-reconfigurable batteries (SRB) are more advance battery architecture allowing inline reconfiguration
of the overall cell layout based on the requested battery pack output voltage and the cell’s state by using
switches [4]. Therefore, an individual cell control taken into account the battery pack cell inconstancy is
possible, and the battery pack is no more limited by the weakest cell. The individual cell control can even
be used to find a cell control strategy that improve the battery lifetime. Significant lifespan improvements
can be obtained by using SRB with optimal control. A lifetime extension of 16% is reached in [5] were
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an optimal energy management is performed. Thus, the lifetime extension is an indirect consequence of
this strategy. Therefore, this article aim to find a strategy optimizing the battery capacity loss which has
a direct effect on the battery lifetime. This article is in continuation with the work presented in [6] where
a optimal capacity loss strategy framework is introduced. The performance analysis is made on constant
power battery discharge simulation with a low Depth of Discharge (DoD) of 25% and show a lifetime
extension of 54%. The objective of this work is to show the SRB lifetime extension capabilities in the EV
application by using this framework. Therefore, performance analysis of the optimal control strategy is
done on SRB simulation using a power profile generated with the Worldwide harmonized Light vehicles
Test Procedures (WLTP) cycle and using a simplified electric car motor model. Additionally, several
batteries DoD are analysed by simulating SRB with profile of different length by using a different
number of consecutive WLTP cycles. The SRB architecture used in this study is presented in [7] and
is illustrated on Fig. 1. This architecture performs an inline reconfiguration of cells connected in series
and allows the generation of a staircase sinusoidal voltage for one phase of an electric motor. In the
same way, this SRB is capable of charging from the power grid without the need of an additional power
converter. The individual cell control can be performed by acting on the proportion of time each cell is
connected during the AC periods.
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Figure 1: SRB hardware architecture for an electric vehicle usage

This paper is organized as follows. In section 2, the battery model used for this study is presented.
It includes an electrical model and Li-ion cell-ageing model based on the battery cell model used in
[8].In addition, this section presents the thermal model and the individual cell control model of the SRB.
Section 3 formulates the process to get the power profile from the WLTP driving cycle with a simplified
electric car motor model. Section 4 reminds the capacity loss optimization framework of [6]. Section
5 presents and analyses simulations results of the SRB at several DoD and ageing progress. Moreover,
these simulations results are combined to reach a whole life SRB simulation to estimate the lifetime
extension. Finally, section 6 concludes the paper.

2 Battery Model
This section underlines the battery cell model and the individual cell current model used in [6]. The
first part of this section presents the cell behaviour according to the current flowing through the cell icell.
Some modifications have been provided in comparison with [6]. Notably, heat exchange between cells
and calendar ageing are added. Then, the second part describes the individual current repartition between
cells of the SRB depending on the desired output AC signal and the system control vector u.

2.1 Battery cell model
The definition used for State of Charge (SoC), State of Health (SoH) and Crate of a battery cell are
given in Eq. (1) to (3).

SoC(t) = 100− 100

3600(Qbol −Qloss(t))

∫ t

0
icell(τ) dτ (1)

SoH(t) = 100
Qbol −Qloss(t)

Qbol
(2)

Crate(t) = icell(t)/Qnom (3)
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with Qloss the cell capacity loss since the beginning of life, icell the current circulating through the cell,
Qnom the cell nominal capacity provided by the manufacturer and Qbol the measured cell capacity at
beginning of life. We introduce an initial capacity dispersion model of the cells in the battery pack by a
normal distribution of Qbol around Qnom.
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Figure 2: 2-RC Thevenin Electrical Equivalent Circuit model

The voltage behaviour of one cell is modelled with a 2-RC Thevenin model (Fig. 2) with an empirical
parametrization of R1C1 = 10s and R2C2 = 100s in our uses case [8]. The impedances Rj , j ∈
{0, 1, 2} are variable parameters regarding T , SoC, Crate and SoH . The cell impedances are corrected
using a multidimensional cartography obtained by hybrid pulse power characterization at different ageing
progression [8, 4]. The related thermal power is obtained with the joule effect of the impedances Rj (4)
[9]. Reversible heat generation can be ignored [2].

Pth = R0 i
2
cell +

v2
R1

R1
+
v2
R2

R2
(4)

In this work, it is assumed that the battery cell are mounted side by side in the battery containing n cells.
Thus the battery cell temperature T follows the heat diffusion model (5) with a convection rate with the
exterior hext and a conduction rate from one cell to the two neighbouring ones htrans. Cp is the cell
calorific capacity.

Cp Ṫj = Pth, j − hext (Tj − Text)− htrans(2Tj − Tj−1 − Tj+1), j ∈ {1 · · ·n} (5)

Equation (6) represents the capacity loss model of one cell [8]. It combines the degradation function
law due to the battery cell cycling Qloss, cyc (7) and the degradation due to the calendar ageing Qloss, cal
(8). The ageing speed of the calendar and cycling degradation function is adapted with the respective
empirical function J dependent of the cell SoC, T and Crate. The respective calendar and cycle ageing
A and m are experimental fitted coefficients. An accelerated ageing protocol and a continuously cycling
protocol of several cells at different T , SoC and Crate is used to determine the parameters of the model.

Q̇loss = Q̇loss, cyc + Q̇loss, cal (6)

Q̇loss, cyc =
Jcyc(Crate, T, SoC)

(1 +AcycQloss)mcyc
|icell| (7)

Q̇loss, cal =
Jcal(T, SoC)

(1 +AcalQloss)mcal
(8)

2.2 SRB individual cell current model
The SRB voltage is generated by controlling the number of cell connected in series. As a result, the
SRB output voltage Vpack is a staircase waveform as represented in Fig. 3. The SRB output current
ipack is defined from the power profile to follow. Indeed, the SRB follows a reference voltage Vref (9)
while supplying a current ipack (10). Therefore, the right amount of cell is needed to perform the voltage
waveform and only the current repartition between the SRB cells is adjustable. This current distribution
is controlled by choosing the right connection rate for each cell during one or more electrical periods,
while ensuring an average connection rate sufficient to provide the desired output voltage.

Vref (t) =
√

2Urms(t) sin(θ(t)) (9)

ipack(t) =
√

2 Irms(t) sin(θ(t) + φ(t)) (10)
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Figure 3: Staircase waveform generated by SRB

with Urms the desired output rms voltage, Irms the rms current, θ the signal phase and φ the current
phase-shift compared to the SRB output voltage.
The rest of this section presents the average current model established in [6] to simplify the SRB model.
The objective of this simplification is to have a cell current model that only depends on the system control
vector u, Urms, Irms, φ and vcell in order to reduce the model complexity concerning the resolution of
the optimal solution. The average current flowing through a cell is simplified using (11).

icell(t) = iav(t)µcell(t) (11)

with iav the average current over all cells in one period (12). The system control vector u reflects the cell
utilization rate. This vector is defined in (13) with n the number of cells in the battery pack.

iav =
1

π · n
∑
j

∫ π

0
icell, j(θ)dθ (12)

u =
(
µcell, 1 . . . µcell, j . . . µcell, n

)T (13)

An approximation of iav can be done by considering the use of AC signal. Thus, iav can be directly
computed with (12) from Urms, Irms, φ and vcell. An example of the current flowing through a cell
connected at the eighth level is represented in Fig. 3. Therefore, the average current of this cell can be
calculated by using Eq. (12).

It is necessary to constrain the mean value of the µcell to one in order to respect the amount of capacity
consumed during the AC voltage periods. Furthermore, µcell dispersion must be limited to the maximal
dispersion that the SRB is capable to deal with ([10]). A useful dispersion indicator is the stochastic
variance. Thus, µcell variance must be kept smaller than µvarmax the maximal variance that the SRB is
capable to handle, and must be limited within a lower bound (lb) and an upper bound (ub).
Eq. (14) summarizes all constraints on µcell.

C(u, t) =



mean
j

(µcell, j) = 1, j ∈ {1 · · ·n}

µcell(t) > µlb(t)

µcell(t) 6 µub(t)

var
j

(µcell, j(t)) 6 µvarmax(t)

(14)

Finally, similarly to the calculation of iav, an average power can be computed for joule effect associated
to R0 :

iav square =
1

π · n
∑
cell

∫ π

0
i2cell(θ)dθ (15)

3 Power profile

The objective of this section is to obtain the profile of Urms(t), Irms(t) and φ(t) of one motor phase
supplied by one SRB from the WTLP driving cycle. The first step consists in the calculation of the
mechanical equation of the EV motor. The power consumption P (t) of the EV is obtained from the
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WLTP vehicle speed v(t) by using Newton law (16) and the parameters in Tab.1. The electric motor
speed ω and torque τ is obtained with respectively (18) and (19).

P (t) = v(t)(mev̇(t) + Crmg +
1

2
ρair SCxv(t)2) (16)

me = m+
1

Rwheel
(JmotorN

2 + nwheel Jwheel) (17)

ω(t) =
v(t)

Rwheel
N (18)

τ(t) = P (t)/ω(t) (19)

The second step consists in the calculation of the electrical equation of the EV motor. Therefore, the
simplified synchronous electric machine model represented in Fig. 4 is used. It is assumed that the EV
motor used an autopilot control (id = 0 A), i.e. the electromotive force

∥∥∥ ~E∥∥∥ = k ω is collinear to the

motor current
∥∥∥~I∥∥∥ = Irms. The current consumed to generate the induction field is ignored. Then,

the assumption is done that the motor control switch from a constant flux control to a constant voltage
control at v = vdeflux.
Finally, in the constant flux mode, the profile is computed with Irms(t) = τ(t)

3 k and k = kcst. In the
constant voltage mode, the profile is computed with P (t)/3 = k ω Irms and Urms = Umax. P (t) and
τ(t) are divided by three because only the profile of one electric phase is considered. The maximal
recovery current during the vehicle braking is limited to Imax, charge.

Urms

k ω R Irms

Lpω Irms

φ

Figure 4: Fresnel diagram of an electric motor with autopilot control.

Table 1: EV parameters partly inspired by the Renault Zoé

Values Description
Cr 0.0111 Rolling friction coefficient
g 9.81 m/s2 Acceleration of gravity
ρair 1.225 kg/m3 Air density
SCx 0.75 m2 Drag area
m 1468 kg Vehicle mass

nwheel 4 Number of wheel
Rwheel 0.31 m Wheel radius
Jwheel 8 kg/m2 Wheel inertial
Jmotor 0.25 kg/m2 Motor inertial
N 10 Gear ratio
R 0.1 Ω Motor equivalent electric resistance
L 0.48 mH Motor equivalent electric induction
p 2 Motor poles pairs

vdeflux 40 km/h Car speed from which the motor flux decrease
kcst 0.6 Nm/A Motor coefficient in constant flux mode

Imax, charge 63 A Maximal rms breaking current
Umax 230 V Maximal motor voltage
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4 Optimisation framework
This section reminds the optimization problem formulates in [6] to optimize the SRB lifetime. Therefore,
global optimization over a well-known profile that minimizes SRB capacity loss (20) respecting the SRB
dynamic and its limits is performed. The SRB capacity loss is defined with the following expression
Qloss pack = mean

j
(Qloss, j), j ∈ {1 · · ·n}.

Minimize the cost function :

min
u(t)

J = min
u(t)

∫ tf

0
t2 Qloss, pack(t)

2 dt (20)

Subject to :

ẋ(t) = f(x(t), u(t), Irms(t), Urms(t), φ(t)) (21)

2.5 6 vcell,(x, t) 6 4.2, j ∈ {1 · · ·n} (22)

C(u, t) (23)

with J the cost function that must be minimized, t the time variable, x the system’s state and f the
dynamic system differential function. Thus, x is the combined state of every cell in the SRB, and it is
defined as follows: x=

(
· · ·SoCj · · · vR1,j · · · vR2,j · · ·Qloss,j · · ·Tj · · ·

)T where j ∈ {1, · · · , n}.
u is the control vector defined in (13) witch control the average cell current submitted to the constraints
(14).
f is defined by the combined dynamic of every cell model presented in subsection 2.1 and the average
current model of the SRB in subsection 2.2. In addition, f also depends on the power profile presented
in Section 3.
In order to return an easier to solve problem, (20) is a quadratic expression and has a weighting that
increase with time.
For all batteries packs using Li-ion cells, voltage limits of every cell must be respected. This is included
in the optimization problem with the inequality constraint (22).
Finally, this problem is solved with numeric methods. A direct multiple shooting method combined with
a sparse matrix interior-point algorithm is used [11]. Discretization is performed by solving linear time-
variant system for the computation of SoC, T and v. Qloss is solved by performing the Euler method
because the time step is chosen small compared to the other four variables.

5 Simulation results
Due to the complexity to solve optimization problem with high dimension, the battery pack chosen
for the simulation only uses 15 Li-ions cells with Qnom = 2.9A.h. We assume that the simulation is
sufficient in order to deduce the optimal solution of a SRB using a higher number of cells. Therefore, it
is necessary to adapt the power profile to the maximal output voltage and the capacity of the SRB using
n = 15 cells: Urms(t) is normalized so that maxt(Urms(t)) =

n·vcell,min√
2

V with vcell,min = 2.5V and
Irms is normalized so that the battery can perform 10 consecutive WLTP driving cycles without reaching
the minimal voltage at battery begin of life (approximatively 230 km of autonomy). The resulting power
profile use for the simulation is represented on Fig. 5.
The battery cell model is based on Nickel Manganese Cobalt (NMC) 18650 cell with graphite anode [8].
Additionally, the battery pack starts to be simulated with a normal distribution for cell’s Qbol and R0,
with a standard deviation of respectively 1% and 6% [2]. Battery cell numeration is in the ascending
order of the cell’s Qbol.

5.1 SRB capacity loss gain
This subsection presents optimization simulation results of the power profile using the SRB at different
levels of DoDpack = 1−mean(SoCj) and SoHpack = mean

j
(SoHj), j ∈ {1 · · ·n}. Simulations start

with an initial SoC for every cell at 90%. This saves us to deal with the upper voltage limitations. Thus,
there is no need to formulate assumption of a car breaking recovery energy management at high value
of SoC. In addition, the SRB discharge is followed by a constant power charge at Vrms = 2.5n√

2
V and

Irms = −3A that bring the battery cells SoC back to 90%. Thus, the SRB power profile is composed of
a variable number of consecutive WLTP profile followed by the constant power charge.
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Figure 5: Power profile
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To evaluate the performance of the optimal solution, a reference simulation is performed in parallel with
exactly the same SRB and initial conditions as the simulation using the optimal solution in terms of SoC,
T , vRi and Qloss. However, the reference simulation is performed with no specific cell control and the
cells are used in an equalized manner : µcell, j = 1, ∀j ∈ {1 . . . n}. So, each cell endure the same
average current similar to a traditional battery pack with a fixed series connection.
An example of the reference simulation is represented on Fig. 7a. This figure shows the simulated vcell,
SoC, T and µcell at 100% of SoHpack and 2 consecutive WLTP cycles resulting in a DoDpack of 27%.
vcell, SoC and T present some dispersions due to the initial dispersion of Qbol and R0.
The simulation of the SRB using a control strategy obtained by solving the optimization problem stated
in section 4 and using the same initial condition and profile is represented on Fig. 7b. It can be observed
through the behaviour of µcell that, the optimization is performed by using some cells at a higher rate
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during the entire profile. As a consequence, these cells are submitted to a greater current resulting to a
deeper discharge and higher cell temperature. This is possible by the fact, that the number of cells in
the SRB is chosen to respect the output voltage when the cells are at minimum voltage as in traditional
battery pack. That means, the SRB only needs some cells when the SoC is high to provide the output
voltage.
The performance of this optimal simulation is observable on Fig. 8 which exhibits a comparison of the
battery capacity loss evolution along time between the two simulations (100% of SoH and with a profile
of 2 consecutive WLTP cycles followed by a constant power charge). The optimization allows reducing
by 31% the total capacity loss compared to the reference simulation. This benefit is explainable by the
cycling ageing behaviour illustrated in Fig. 6 representing the cycling ageing speed Jcyc of one cell in
function of SoC for two representatives values of Crate and T . The cell degradation is mainly caused by
cycling at high value of SoC, and so ageing gain is obtained by reaching as soon as possible an optimal
SoC value around 60% as shown on Fig. 7b with the SoCcell behaviour.
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Figure 7: SRB simulation at 100% of SoH and with a profile of 2 consecutive WLTP cycles followed by a constant
power charge
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Figure 8: SRB capacity loss comparative between the reference and the optimization at 100% of SoH and with a
profile of 2 consecutive WLTP cycles followed by a constant power charge
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Finally, the capacity loss gain of the simulations using optimal control at different value of SoHpack and
DoDpack are summarized on Tab .2. The different value of SoHpack are obtained from a SRB which
has cells aged at the same amount of Qloss, j = Qbol, pack (1 − SoHpack). It can be observed that a
great capacity loss gain can be obtained with the optimal control when the DoDpack is low because it is
possible from the SRB to bring faster some cell in the SoC zone with the lower ageing speed and not to
use the other ones. However, when the DoDpack is higher, it is more difficult not to use some cell and to
have the other in the optimal SoC zone.

Table 2: DoDpack and capacity loss gain of the optimal solution in comparison with the reference for simulation
using different power profile length and different SoHpack (Simulation start with DoDpack=10%)

SoH 100% 95% 90% 85%
Num. WLTP DoD Gain DoD Gain DoD Gain DoD Gain

1 19% 22% 20% 23% 20% 22% 20% 24%
2 27% 31% 28% 30% 30% 30% 31% 29%
3 36% 10% 38% 8% 39% 8% 41% 9%
4 45% 8% 47% 8% 49% 8% 52% 7%
5 54% 7% 57% 5% 59% 7% 63% 8%
6 64% 6% 67% 8% 70% 8% 74% 6%

5.2 Lifetime extension estimation
To estimate a lifetime extension of the optimal control strategy in comparison to the reference control, the
whole SRB life can be simulated by cycling profiles of various DoD until a SoH threshold is reached.
Between each cycle, the SRB SoC, vRi and T are reset to the initial condition. OnlyQloss are transferred
from a cycle to the next one. Each profile length is uniformly randomly composed of 1 to 6 consecutive
WLTP driving cycles for varying the DoD.
However, optimization over the whole lifetime is not possible due to the high dimension of the optimiza-
tion problem. Suboptimal simulation can be performed by reusing the optimal control sequences u(t)
obtained from the optimization performed for the simulations whose results are summarized in Tab. 2.
For each cycle, the optimal solution with the corresponding number of consecutive WLTP cycles and
with the closest superior SoH is chosen.
In addition, to have cells that reach end of life at the same time, the SRB optimal control vector u(t) is
permuted between cells for each profile in such a way that Qloss,, j ∈ {1 · · ·n} is equalized in long-
term. Indeed, we have previously seen that the optimization is mainly based on the fact a that some cell
reach faster the optimal SoC zone, and so the initial parameter dispersion between cell have a small
effect on the capacity loss gain. Therefore, permuting some cells that have a high utilization rate with
those having a low utilization rate between profile is an acceptable suboptimal solution.
In parallel, the reference simulation is produced by cycling exactly the same profile sequence until it
reaches SRB’s end of life and with µcell, j = 1, ∀j ∈ {1 . . . n}.

Fig. 9 displays SRB capacities of the reference simulation and the optimal control simulation during the
whole lifetime with the previously mentioned protocol. If the SRB end of life is defined arbitrarily when
the mean capacity value of the cells reach 2.32 Ah (80% SoHpack), it can be seen that the reference
simulation performs 40 kWh and the simulation using the optimal control 45 kWh. This represents a
lifetime extension of 12.5%.

Knowing the benefits of the optimal control compared to reference control for SRB, it would be interest-
ing to compare this result to conventional battery pack. The balancing capabilities of SRB experimented
in [10] are so efficient that it can be assumed that the SRB is capable to extract the energy of all cells.
The mean value of the cells capacities is then a good image of the battery pack capacity. On the other
side, the conventional battery is limited by the weakest cell. We assume that the conventional battery
capacity with exactly the same Li-on cell connected in series and using a DC/AC converter to provide
the AC output signal, is represented by the cell with the lowest capacity in the SRB with the reference
control. We also assume that the SRB with reference control and the conventional battery pack have the
same ageing speed.
The conventional battery end of life is observed at 32 kWh. Finally, the SRB using the optimal strategy
enables lifetime extension of 40.6% compared to the conventional battery.
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6 Conclusion
In a precedent work [6], a battery lifetime optimization framework for SRB generating AC waveform
signal was presented. A performance analysis was achieved using simulation on simple constant power
profile and exhibits a lifetime extension of 54%. This paper proposes to apply the same methodology for
the EV use case through driving profile. Therefore, after reminding the battery model and the optimiza-
tion framework, a simplified EV motor model is presented to generate the SRB power profile based on
the WLTP driving cycle. This allows performing various optimization results at different DoD and bat-
tery ageing stages showing the SRB lifetime extension benefits. A battery lifespan extension estimation,
performed by cycling profile of different length during the whole battery life, exhibits an improvement
of 40.6% compared to an equivalent standard battery.
Furthermore, this work can be used to evaluate the performance and give some clues for the development
of real time control as already performed in [12] with the development of a nonlinear Model Predictive
Control (nMPC) achieving a 12.4% capacity loss reduction on one WLTP cycle.
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